The Iron Abundance of Iota Herculis From Ultraviolet Iron Lines

Previous abstract Next abstract

Session 22 -- Stellar Spectroscopy, Atmospheres, Models, Intrinsic Variables, Theory, Part II
Display presentation, Tuesday, June 13, 1995, 9:20am - 6:30pm

[22.14] The Iron Abundance of Iota Herculis From Ultraviolet Iron Lines

J. Grigsby (Wittenberg U.), C. Mulliss (U. Toledo), G. Baer (Indiana U.)

We have obtained (Adelman 1992, 1993, private comunication) coadded, high-resolution IUE spectra of Iota Herculis (B3 IV) in both short wavelength (SWP) and long wavelength (LWP) regions. The spectra span the ultraviolet spectrum from 110 - 300 nm and have a SNR of roughly 30 -50; they are described in Adelman et. al. (1993, ApJ 419, 276). Abundance indicators were 54 lines of Fe II and 26 lines of Fe III whose atomic parameters have been measured in the laboratory. LTE synthetic spectra for comparison with observations were produced with the Kurucz model atmosphere and spectral synthesis codes ATLAS9/SYNTHE (Kurucz 1979, ApJS 40,1; Kurucz and Avrett 1981, SAO Special Report 391). Model parameters were chosen from the literature: effective temperature = 17500 K, log g =3.75, v sin i= 11 km/s, and turbulent velocity = 0 km/s. (Peters and Polidan 1985, in IAU Symposium 111, ed. D. S. Hayes et al. (Dordrecht: Reidel), 417).

We determined the equivalent widths of the chosen lines by fitting gaussian profiles to the lines and by measuring the equivalent widths of the gaussians. We derived abundances by fitting a straight line to a plot of observed equivalent widths vs. synthetic equivalent widths; we adjusted the iron abundance of the models until a slope of unity was achieved. The abundances derived from the different ionization stages are in agreement: Fe II lines indicate an iron abundance that is 34 +15/-10% the solar value([Fe/H]=-0.47 +0.16-0.15dex), while from Fe III lines we obtain 34 +/- 10% ([Fe/H]=-0.47 +0.11/-0.15 dex). A search of the literature suggests that no previous investigations of this star's iron abundance have found agreement between the different ionization stages.

We thank Saul Adelman for his generous assistance, and the Faculty Research Fund Board of Wittenberg University for support of this research.

Tuesday program listing