The Magellan Project

Previous abstract Next abstract

Session 41 -- The Status of Large Telescope Projects, Instrumentation and Plans for Large Science Programs in the Areas of Wide-Field Surveys
Oral presentation, 8:30am - 12:30pm, June 14, 1995, 9:20am - 6:30pm

[41.05] The Magellan Project

Stephen A. Shectman (Carnegie Observatories)

The Magellan project is a collaboration between the Carnegie Institution of Washington and the University of Arizona to build and operate a 6.5-meter telescope at the Las Campanas Observatory in Chile. Negotiations which are presently underway with additional partners are likely to result in the construction of a second identical telescope as part of the same facility. The concrete work for the first telescope has been completed. The steel structure for the fixed part of the dome and for the aluminizing building has been shipped to the site. The structure for the rotating part of the dome should arrive at the site by the end of 1995. The telescope mount is being constructed by L\&F Industries of Huntington Park, CA. Most of the structure has been fabricated and machining of the parts is underway. Shop assembly of the mount is scheduled to be completed by the end of 1995, and the mount should arrive at the site by mid-1996. The borosilicate honeycomb mirror blank for the first telescope was cast at the Steward Observatory Mirror Lab in February, 1994. The refractory material is presently being cleaned out of the honeycomb cores, and figuring should begin in 1996. The schedule calls for the mirror to be installed in the telescope by mid-1997.

The optical design of the telescope features an f/11 Gregorian secondary for which the field curvature is matched to the collimator optics of a wide-field imaging spectrograph. A two-element field corrector incorporates an atmospheric dispersion compensator with no additional glass-air surfaces. The matching field curvatures permit the collimator to cover a very wide field (30 arc-min) with high image quality (0.1 arc-sec rms). Cameras and detectors which make use of such a wide field are challenging but at least conceivable from a technical point of view.

A compact echelle spectrograph has also been designed to work in the resolution range 30-50,000. Spectral coverage will be complete between 3500A and 8500A. The spectrograph has been designed for high throughput and the CCD readouts will be optimized in a novel way to minimize the effect of amplifier noise for observations of faint objects.

8:30a program listing