Previous abstract Next abstract
Session 63 - Galaxy Evolution II.
Oral session, Tuesday, January 16
Corte Real, Hilton
I have analyzed deep R- and B-band CCD images of the central \sim 700 arcmin^2 of the Coma cluster (Abell 1656, v = 7000 km/s, richness-class 2), using a statistically rigorous and automated method for the detection, photometry and classification of faint objects on digital images. The dwarf elliptical (dE) galaxies are confined to a well-defined sequence in the color range given by 0.7 \le (B-R) \le 1.9 mag; within this interval and complete to R = 22.5 mag, there are 2535 dE candidates in the cluster core, and 694 objects on the associated control field (2.57\times less area). I detected a significant metallicity gradient in the radial distribution of dE galaxies, which goes as Z \propto R^-0.32 outwards from the cluster center at NGC 4874. As well, there is a strong color-luminosity correlation, in the sense that more luminous dE galaxies are redder in the mean. These observations are consistent with a model in which the intracluster gas exerted a confinement pressure (greatest near the cluster core), impeding the outflow of supernovae-driven metal-rich gas from the young dE galaxies. The spatial distribution of faint dEs is well fit by a standard King model with a core radius R_c = 18.7 arcmin (\simeq 0.44 Mpc), significantly larger than found for the brightest dEs and giant cluster galaxies, and consistent with tidal disruption of faint dEs in the dense cluster core. The composite luminosity function for Coma galaxies was modeled as the sum of a log-normal distribution for the giant galaxies and a Schechter function for the dE galaxies. Decomposing the galaxy luminosity function in this manner, I found that the early-type dwarf-to-giant ratio (EDGR) for the Coma cluster core is identical with that of the Virgo cluster. I proposed that the presence of substructure is an important factor in determining the cluster's EDGR, since during the merger of two or more richness-class 1 galaxy clusters, the total number of dwarf and giant galaxies will be conserved. Thus, this low EDGR result is consistent with the Coma cluster being formed as the merger of multiple, less-rich galaxy clusters.