Previous abstract Next abstract

Session 68 - Invited Talks: Observing Star Formation.
Invited session, Tuesday, January 16
1st Floor, La Villita Assembly Building

[68.01] Observing Star Formation: From the Interstellar Medium to Star-Forming Cores

A. A. Goodman (Harvard University Astronomy Department)

In the thirty years since the first mapping of molecular line emission from interstellar clouds, our ``picture" of the interstellar medium has evolved enormously. With only optical observations available, it was (correctly) hypothesized that new stars form from condensations of dense interstellar gas which appear optically as dark or bright nebulae. These early hypotheses often envisioned the overall collapse of whole clouds into stars, or fragmentation of entire clouds into ``Jeans mass"-size clumps. Thirty years of observing the clouds and the star-formation process which takes place within them has, alas, shown these hypotheses to be too simple.

Radio-wavelength spectral-line mapping of interstellar gas, far-infrared and sub-millimeter continuum observations of thermal dust emission, and near-infrared and optical spectral and continuum observations of young stellar objects (YSO's) have revealed a detailed--yet nonetheless perplexing--view of the star-formation process. Molecular ``clouds" appear to be wispy, clumpy condensations of interstellar gas, with self-similar density and velocity structure on scales from hundreds of parsecs down to tenths of parsecs. Projected on density maxima in the gas distribution, one often finds point (or very compact) sources whose spectral colors are consistent with their being deeply embedded in dense gas. These sources are often the origin of powerful jets and outflows and are believed to be YSO's. The outflows, which can carry angular momentum away from a YSO, represent an important phase in the star-formation process.

I will discuss the current observational ``picture" of star-forming molecular clouds, as well as some of the many theoretical models which have been proposed to explain cloud structure. Current theories and simulations include gravitational, magnetic and dynamical forces and seek to explain how these forces conspire to simultaneously regulate equilibrium, turbulent, and runaway (e.g. star-formation) processes observed in molecular clouds.

Program listing for Tuesday