Previous abstract Next abstract
Session 69 - Instabilities in Planetary Systems.
Display session, Friday, January 09
Exhibit Hall,
Questions regarding the density of the local zodiacal clouds have recently become important in many areas. Several planned searches for extrasolar system planets require a better knowledge of the behavior of zodiacal clouds, the solar system zodiacal cloud has been suggested as a driving force for glaciations, and it is becoming clear that discussions regarding prebiotic chemistry must include the flux of interplanetary particles onto Earth. No certain upper limits can today be set for transient density variations in the local zodiacal cloud, nor for fluctuations in the particle-flux onto Earth. Some new results have, however, created a possibility to measure this in the geological record. An interdisciplinary project is described. The goal for the project is to set upper limits for the zodiacal dustflux onto Earth during passages through IRAS dust-bands during the last 2.5 million years, and use these limits to calculate the maximum density of the bands. We estimate the predicted flux of zodiacal particles onto Earth through orbital modeling., where it is assumed that the source for the IRAS dust-bands are a few Hirayama asteroid families. The orbits of the asteroids and the produced dust are integrated to find the times when Earth revolved within a dust-band. This forms the basis for a geochemical analysis of oceanic sediments, lake sediments, ice-cores and loess-deposits, with the goal to find the signal from a passage through a dust-band. Apart from providing an excellent stratigraphic dating tool, the identification and characterization of such a signal would give important information about the behavior of the zodiacal cloud over shorter times (1-2 My). Some astronomical results are presented and compared with sedimentological observations.