Previous abstract Next abstract
Session 46 - Interstellar Scattering and Scintillation as Tools in Radio Astronomy.
Topical, Oral session, Tuesday, June 09
Sierra/Padre,
There are a number of well-established observational results from radio scintillations which have implications for the nature of interstellar turbulence. Among such results are evidence for anisotropy and a Kolmogorov spectrum for the density irregularities. It is probable the galactic magnetic field organizes these irregularities so that spatial gradients along the field are much less than those perpendicular to the field. Such a behavior for turbulence is predicted by theories of magnetohydrodynamic turbulence in which the amplitude is small. The turbulence is then described by a theory termed reduced magnetohydrodynamics. A limiting case of reduced magnetohydrodynamics is two dimensional magnetohydrodynamics, in which the direction of the large scale magnetic field z defines the ignorable coordinate. Two dimensional magnetohydrodynamics consists of a pair of coupled nonlinear partial differential equations for the velocity stream function \psi and the z component of the magnetic vector potential A_z. A number of observed features of interstellar turbulence can be identified with solutions to the equations of two dimensional magnetohydrodynamics. Examples are the development of Kolmogorov-like spectra for the velocity and magnetic field from a wide class (although not totally general) initial conditions, a natural explanation for the formation of intermittancy in turbulence, and the rapid development of small scale, large spatial wavenumber fluctuations, in contrast to the eddy cascade of hydrodynamic turbulence. The equations of two dimensional magnetohydrodynamics may serve as a simple but tractable model of interstellar plasma turbulence that may complement and be superior to the traditional model of an ensemble of magnetohydrodynamic waves.