AAS Meeting #193 - Austin, Texas, January 1999
Session 78. Computers in Education
Display, Friday, January 8, 1999, 9:20am-6:30pm, Exhibit Hall 1

[Previous] | [Session 78] | [Next]


[78.02] Desktop Parallax and Proper Motion: A Laboratory Exercise on Astrometry of Asteroids from Project CLEA

L. A. Marschall, G. A. Snyder, R. F. Good, M. B. Hayden, P. R. Cooper (Gettysburg College)

Students in introductory and advanced astronomy classes can now experience the process of discovering asteroids, can measure proper motions, and can actually see the parallax of real astronomical objects on the screen, using a new set of computer-based exercises from Project CLEA. The heart of the exercise is a sophisticated astrometry program "Astrometry of Asteroids", which is a restricted version of CLEA's research software "Tools for Astrometry" described elsewhere at this meeting. The program, as used in the teaching lab, allows students to read and display digital images, co-align pairs of images using designated reference stars, blink and identify moving objects on the pairs, compare images with charts produced from the HST Guide Star Catalog (GSC), and fit equatorial coordinates to the images using designated reference stars from the GSC. Complete technical manuals for the exercise are provided for the use of the instructor, and a set of digital images, in FITS format, is included for the exercise.

A student manual is provided for an exercise in which students go through the step-by-step process of determining the tangential velocity of an asteroid. Students first examine a series of images of a near-earth asteroid taken over several hours, blinking pairs to identify the moving object. They next measure the equatorial coordinates on a half-dozen images, and from this calculate an angular velocity of the object. Finally, using a pair of images of the asteroid taken simultaneously at the National Undergraduate Research Observatory (NURO) and at Colgate University, they measure the parallax of the asteroid, and thus its distance, which enables them to convert the angular velocity into a tangential velocity. An optional set of 10 pairs of images is provided, some of which contain asteroids, so that students can try to "find the asteroid" for themselves. The software is extremely flexible, and though materials are provided for a self-contained exercise, teachers can adapt the material to a wide variety of uses. The software and manuals are currently available on the Web. Project CLEA is supported by grants from Gettysburg College and the National Science Foundation.


If you would like more information about this abstract, please follow the link to http://www.gettysburg.edu/project/physics/clea/CLEAhome.html. This link was provided by the author. When you follow it, you will leave the Web site for this meeting; to return, you should use the Back comand on your browser.

The author(s) of this abstract have provided an email address for comments about the abstract: clea@gettysburg.edu

[Previous] | [Session 78] | [Next]