AAS 195th Meeting, January 2000
Session 87. Ground-Based Observatories and Techniques
Display, Friday, January 14, 2000, 9:20am-6:30pm, Grand Hall

[Previous] | [Session 87] | [Next]


[87.07] SOAR Telescope Progress Report

T. Sebring, G. Cecil, V. Krabbendam (SOAR Project, NOAO)

The 4.3m SOAR telescope is fully funded and under construction. A partnership between the country of Brazil, NOAO, Michigan State University, and the University of North Carolina at Chapel Hill, SOAR is being designed for high-quality imaging and imaging spectroscopy in the optical and near-IR over a field of view up to 12' diameter. US astronomers outside MSU and UNC will access 30% of the observing time through the standard NOAO TAC process. The telescope is being designed to support remote and synoptic observations. First light is scheduled for July 2002 at Cerro Pachon in Chile, a site with median seeing of \approx2/3" at 500 nm. The telescope will be operated by CTIO.

Corning Inc. has fused the mirror blanks from boules of ULE glass. RSI in Richardson, Texas and Raytheon Optical Systems Inc. in Danbury, Conn. are designing and will fabricate the mount and active optics systems, respectively. The mount supports an instrument payload in excess of 5000 kg, at 2 Nasmyth locations and 3 bent Cass. ports. The mount and facility building have space for a laser to generate an artificial AO guide star. LabVIEW running under the Linux OS on compactPCI hardware has been adopted to control all telescope, detector, and instrument systems. The primary mirror is 10 cm thick and will be mounted on 120 electro-mechanical actuators to maintain its ideal optical figure at all elevations. The position of the light-weighted secondary mirror is adjusted to maintain collimation through use of a Shack-Hartmann wavefront sensor. The tertiary mirror feeds instruments and also jitters at up to 50 Hz to compensate for telescope shake and atmosphere wavefront tilt. The dome is a steel framework, with fiberglass panels. Air in the observing volume will be exchanged with that outside every few minutes by using large fans under computer control. All systems will be assembled and checked at the manufacturer's facility, then shipped to Chile. A short integration period is planned, and limited science operations will begin in late 2002.

The telescope will deliver an f/16 tip/tilt/focus stabilized image. Optical spectrographs (5' field and IFU) using volume-phase holographic gratings for high efficiency, and wide-field optical and near-IR imagers are under development at partner institutions and at partner expense. These instruments are being designed to exploit the excellent image quality of the telescope. SOAR is participating in consortia for Rockwell 2x2K HgCdTe arrays, and MIT/Lincoln Labs 2x4K CCD's. Most detectors will be run with SDSU-2 array controllers, and custom LabVIEW software. CTIO is also responsible for CCD integration.


The author(s) of this abstract have provided an email address for comments about the abstract: tsebring@noao.edu

[Previous] | [Session 87] | [Next]