[Previous] | [Session 35] | [Next]
L. M. Hobbs (Univ. of Chicago)
Several important goals have motivated observationally challenging attempts to measure 6Li/7Li isotopic ratios and, hence, 6Li abundances in stars. In particular, a general understanding, based on cosmic-ray spallation reactions, of the nucleosynthetic origins of the very low Galactic abundances of 6Li, Be, and B has followed from measurements of both the relative and the absolute abundances of these various, related isotopes. In the cases of Be and B, such data are currently available for 20 or more stars that span a wide range of metallicity, i.e. age. In contrast, nuclear burning of the very fragile 6Li nuclei during stellar contraction to the main sequence generally reduces the surface abundance of this lighter isotope below the observable limit. A few relatively nearby stars of low metallicity which are found close to the Population II main-sequence turnoff during later hydrogen burning seem to constitute the observable exceptions. Spectra of very high quality, typically with R > 100,000 and S/N > 400 at V > 9.0, are needed to reveal the small extra asymmetry and the small extra width that are introduced into the profile of the isotopically blended Li I 6707 A line by the small fractions of 6Li detected so far.
Precise measurements of (or, in all but a few cases, uppper limits on) the 6Li/7Li ratio are now available for almost 30 stars. At a ratio 6Li/7Li = 0.06, the first positive detection of stellar 6Li was achieved in 1993 for the turnoff halo star HD 84937, by Smith, Lambert, & Nissen. Probable detections of the lighter isotope at generally similar isotopic ratios have since been reported for four additional metal-poor stars. The imminent availability of more telescopes in the 8m to 10m class promises a rewarding extension of this effort to a relatively large number of excellent, fainter 6Li candidates.