AAS 196th Meeting, June 2000
Session 39. Gamma Ray Bursters: Supernovae and Their Remnants
Display, Wednesday, June 7, 2000, 10:00am-7:00pm, Empire Hall South

[Previous] | [Session 39] | [Next]


[39.06] The Hubble Heritage Image of the Crab Nebula Supernova Remnant

W.P. Blair (JHU), J. English, H.E. Bond, C.A. Christian, L. Frattare, F. Hamilton, Z. Levay, K.S. Noll (STScI)

The Hubble Heritage Project has the aim of providing the public with pictorially striking images of celestial objects obtained with NASA's Hubble Space Telescope. Here we present a 5-color Wide Field Planetary Camera 2 (WFPC2) image of the Crab Nebula, a ~950 year old supernova remnant located 6500 light-years distant in the constellation Taurus.

The images were obtained in 1995 January and April, and the science investigation reporting results was published by Blair, W. P., et al. (1997, ApJS, 109, 473--480). Over 10 hours of exposure time through 5 separate optical continuum band and emission-line filters were used to study size scales and ionization structures of the filaments and newly synthesized dust within the expanding ejecta.

The Heritage version of these data shows several important aspects of the Crab Nebula all in one spectacular image. The continuum image shows stars, including the enigmatic pulsar (the collapsed core of the original star) and the ghostly diffuse synchrotron nebula energized by the pulsar. The synchrotron nebula in turn heats and ionizes the surrounding clumpy filaments of gas and dust visible in the emission line images. These filaments are the supernova ejecta that were expelled during the explosion and are now expanding outward from the pulsar at high speed. The different colors in the picture show optical emission lines of hydrogen (orange), nitrogen (red), sulfur (pink) and oxygen (bluish-green). The subtle changes in color from one filament to the next arise because of varying temperatures and densities of the gas, and variable chemical abundances of the ``star stuff," or the doppler shifting of emission into or out of the various narrow filter bandpasses.

Support for this work was provided by NASA through grant numbers GO-07632.01-96A and GO-5354.04-93A from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.


If you would like more information about this abstract, please follow the link to http://heritage.stsci.edu/. This link was provided by the author. When you follow it, you will leave the Web site for this meeting; to return, you should use the Back comand on your browser.

The author(s) of this abstract have provided an email address for comments about the abstract: wpb@pha.jhu.edu

[Previous] | [Session 39] | [Next]