[Previous] | [Session 6] | [Next]
C. P. Deliyannis (Indiana University), S. G. Ryan (The Open University, United Kingdom)
We present measurements of the 6Li/7Li isotope ratio in ten metal-poor stars derived from very high resolution (100,000) and S/N (300-800/pixel) McDonald 2.7-meter coude spectra, including two possible 6Li detections. We present specific new evidence that we have indeed detected the 6Li absorption feature, and not a convective asymmetry of the 7Li feature. One of our detections argues in favor of a protostellar (and not a surface-spallated) origin for this 6Li. We find that 6Li has either not evolved strongly with metallicity, in contrast to what is observed for Be and B, or else concurrent 6Li production is matched by stellar depletion. While such fine-tuning seems unlikely, no models can explain the origin of 6Li without such depletion. In the context of the observed 9Be/7Li depletion correlation and its slow-mixing explanation, taking our data at face value implies that the Big Bang 7Li abundance is no more than 0.2-0.3 dex higher than the values observed in the halo Li plateau.