DPS Pasadena Meeting 2000, 23-27 October 2000
Session 59. Mars Surface and Satellites Posters
Displayed, 1:00pm, Monday - 1:00pm, Friday, Highlighted Tuesday and Thursday, 3:30-6:30pm, C101-C105, C211

[Previous] | [Session 59] | [Next]


[59.07] Orbit Determination of the Mars Global Surveyor Spacecraft using Laser Altimetry

D.E. Smith (NASA GSFC), M.T. Zuber, G.A. Neuman (MIT), F.G. Lemoine, D.D. Rowlands (NASA GSFC)

Many of the scientific investigations of the Mars Global Surveyor (MGS) mission require high precision orbital information and some are limited entirely by its quality. These include the laser altimeter (MOLA), the Mars gravity field and atmospheric occultation investigations by radio science, and the planetary dynamics and celestial mechanics investigations. The precision of the orbits can usually be assessed by comparing overlapping orbits for a given period; but these results tend to reflect the repeatability rather than the accuracy. The re-constructed orbits from the doppler and range tracking data on MGS are (to date) at the few meter level radially, and a few hundreds of meters horizontally, using the best gravity models, presently available. With the laser altimeter on MGS we have a mechanism to measure the quality and to actually make significant improvements in the orbital accuracy by incorporating the altimetry data as a tracking datatype. By adding the altimeter measurements at orbital cross-over locations we have been able to reduce the radial error to 1 meter of less on average and have reduced the along track and out of plane error by almost 2 orders of magnitude down to a few meters. It is apparent that the altimeter observation provides a geometric strength to the orbit that it is not possible to obtain from the present doppler and the range data alone. We discuss the results obtained for the first year of the MGS mapping orbit. This work is supported by the NASA Mars Program.



[Previous] | [Session 59] | [Next]