DPS Pasadena Meeting 2000, 23-27 October 2000
Session 18. Titan Posters
Displayed, 1:00pm, Monday - 1:00pm, Friday, Highlighted Tuesday and Thursday, 3:30-6:30pm, C101-C105, C211

[Previous] | [Session 18] | [Next]


[18.07] O+ bombardment of an O and O2 Thermosphere

M. McKeown, R.E. Johnson (University of Virginia)

Ejection of atoms and molecules from the atmosphere of Mars is caused by energetic O+ pickup-ion bombardment [Luhmann et al, 1992; Jakosky et al.,1994], a process referred to as atmospheric sputtering. This process also occurs on other bodies which have molecules at the exobase such as Europa and Titan. Using a Monte Carlo procedure we calculate the rate of ejection of particles from a model thermosphere composed of O and O2 which is bombarded by energetic O+. To allow for dissociation of O2, collisions between high energy O atoms and O2 molecules are treated using classical molecular dynamics with semi-empirical interaction potentials. O + O collisions are treated with the magic formula method of Zeigler et al.,1985. The effect of molecular binding on the atmospheric sputtering yield is examined.



[Previous] | [Session 18] | [Next]