DPS Pasadena Meeting 2000, 23-27 October 2000
Session 50. Mars Atmosphere I
Oral, Chairs: J. Barnes, R. Novak, Friday, 2000/10/27, 8:30-10:00am, C106

[Previous] | [Session 50] | [Next]


[50.05] Changes in the Martian Circulation and Climate in Response to Orbital Parameter Variations

M.I. Richardson (California Institute of Technology), R.J. Wilson (Geophysical Fluid Dynamics Laboratory)

Martian orbital parameters are known to vary on time scales greater than 105 years. Such variations, especially in obliquity, have important consequences for the spatial distribution of solar heating of the surface and atmosphere, and hence are expected to affect some form of quasi-periodic climate change. The impact of changing obliquity on surface temperatures, and hence on volatile stability have been widely addressed. However, the changing insolation patterns should also modify the circulation of the atmosphere. As the nature and rate of volatile transport, and the vigour of dust lifting and transport from the surface are critical aspects of the climate, the circulation response to orbital variations needs to be assessed. In this presentation, we show results from the Geophysical Fluid Dynamics Laboratory (GFDL) Mars General Circulation Model (GCM) in which the orbit of Mars has been varied: obliquities between 0 and 60, perihelion passage between Ls=70 and 250, and eccentricities between 0 and 0.12. In general, the total atmosphere and cap CO2 budget is held constant (i.e. we assume no exchange with the regolith), and that the rate of dust supply into the lowest model level remains constant. The impact of these assumptions are examined. Many of the anticipated changes in circulation are found to occur as obliquity is increased from 0: The Hadley cell strength and that of the winter polar jet are found to increase; The magnitude of the seasonal CO2 cycle increases, resulting in extensive seasonal ice caps; Surface winds strengthen resulting in greater surface stresses and likely stronger dust lifting; The cycle of water becomes more vigourous, with large column vapour amounts in the polar regions corresponding to higher cap surface temperatures. However, some results contrast with expectations: Although the surface wind strengths change with orbital parameters, the mean directions tend not to, with implications for aeolian geological features; Even at low obliquity, the model does not develop a permanent CO2 ice cap at either pole (this likely reflects the fact that uniform and non-varying ice properties are gravely inadequate to realistically simulate Martian polar ices); Water ice deposits do not stabilize at the equator, even at high obliquity - instead they slosh backwards-and-forwards between the seasonal ice caps, as they do at present. We note that the southern summer Hadley circulation remains the dominant cell when integrated over the annual cycle, even when the timing of perihelion passage is varied by 180 degrees. We suggest that this reflects the greater importance of the global topographic dichotomy for the strength of the mean meridional circulation over that of eccentricity.



[Previous] | [Session 50] | [Next]