DPS 2001 meeting, November 2001
Session 12. Kuiper Belt and KBOs Posters
Displayed, 9:00am Tuesday - 3:00pm Saturday, Highlighted, Tuesday, November 27, 2001, 5:00-7:00pm, French Market Exhibit Hall

[Previous] | [Session 12] | [Next]


[12.07] Colors and Compositional Characteristics of Kuiper Belt Objects and Centaurs

S. M. Lederer (NASA JSC), F. Vilas (NASA JSC & NASA Headquarters), K. S. Jarvis (Lockheed-Martin), L. French (Wheelock College)

We present a study designed by Painter et al. (DPS 2000) to search for evidence of aqueous alteration in the surface material of solar system objects. Using VRI broadband photometry, we will search for the presence of the 0.7 um absorption feature (indicative of Fe-bearing hydrated silicates) in KBOs and Centaurs. Vilas (Icarus 111, 1994) found a strong correlation between the presence of the 0.7-um feature in low-albedo asteroids with solar-like colors and the 3-um water of hydration feature, indicative of phyllosilicates. Recent work by Howell et al. (LPSC, 2001) confirms that the presence of the 0.7 um feature in low-albedo asteroids definitely indicates the presence of the 3.0-um water of hydration absorption feature, suggesting the action of aqueous alteration in asteroids. In addition, Feierberg et al. (Icarus 63, 1985) showed that when the U - B color difference is > 0.12 in ECAS photometry, the 3.0-um absorption feature is often present in low albedo asteroids. Therefore, if the U-B color difference is > 0.12 and the 0.7-um feature is present in UBVRI reflectance photometry, water of hydration is implied in KBOs and Centaurs. We pursue these studies based on the mixed flat or steeply reddened photometry of these objects: Water ice has been identified in near-IR dark, flat spectra of some Centaurs, providing a source for the action of aqueous alteration. The complex collisional history proposed for these objects suggests a potential source of heating that would melt water ice, providing a mechanism for aqueous alteration to occur.

Finally, we will use BVR photometry to determine the B-V and V-R colors, as has been done by Tegler and Romanishin (Nature, 407). We will compare our results with colors of KBOs and Centaurs published in the literature.

This research was supported by the National Research Council and the NASA Planetary Astronomy Program.


[Previous] | [Session 12] | [Next]