DPS 35th Meeting, 1-6 September 2003
Session 14. Mars Atmosphere II
Poster, Highlighted on, Wednesday, September 3, 2003, 3:00-5:30pm, Sierra Ballroom I-II

[Previous] | [Session 14] | [Next]


[14.09] The ``Mars-Sun Connection" and the Impact of Solar Variability on Mars Weather and Climate

D. M. Hassler, D. H. Grinspoon (Southwest Research Institute)

We develop the scientific case to measure simultaneously the UV and near-UV solar irradiance incident on the Mars atmosphere and at the Martian surface, to explore the effects and influence of Solar variability and ``Space Weather" on Mars weather and climate, its implications for life, and the implications for astronaut safety on future manned Mars missions.

The UV flux at the Martian surface is expected to be highly variable, due to diurnal, daily, and seasonal variations in opacity of atmospheric dust and clouds, as well as diurnal and seasonal variations in ozone, water vapor and other absorbing species. This flux has been modeled (Kuhn and Atreya, 1979), but never measured directly from the Martian surface. By directly observing the UV and near UV solar irradiance both at the top of the atmosphere and at the Martian surface we will be able to directly constrain important model parameters necessary to understand the variations of atmospheric dynamics which drive both Mars weather and climate.

Directly measuring the solar UV radiation incident upon the Mars atmosphere and at the Martian surface also has important implications for astronaut safety on future manned Mars missions. The flux at the surface of Mars at 250 nm is also believed to be approximately 3000 times greater than that on Earth. This presents potential hazards to future human explorers as well as challenges for future agriculture such as may be carried out in surface greenhouses to provide food for human colonists. A better understanding of the surface flux will aid in designing appropriate protection against these hazards.


[Previous] | [Session 14] | [Next]

Bulletin of the American Astronomical Society, 35 #4
© 2003. The American Astronomical Soceity.