37th DPS Meeting, 4-9 September 2005
Session 28 Extrasolar Planets
Oral, Tuesday, September 6, 2005, 4:20-6:00pm, Law LG19

[Previous] | [Session 28] | [Next]


[28.04] Hot Jupiters: how rapidly are they evaporating?

A. Garcia Munoz, J. C. McConnell, J. J. Caldwell (York University)

The detection of an extended atmosphere on the exoplanet HD 209458 b containing H, C and O and reaching as far out as 3-4 planetary radii (Vidal-Madjar et al. 2004, Astrophys. J. 604, L69-L72 ) constitutes a unique case in the study of so-called hot Jupiters. At 0.045 AU from its host star, stellar EUV radiation supplies HD 209458 b with sufficient energy so as to heat up its upper atmosphere and, presumably, power its evaporation. The goal of this work is two-fold: estimate the evaporation rate from the atmosphere of hot Jupiters, of importance for the understanding of their evolution, and predict the composition of their thermosphere, giving support to future observations. For this purpose we have built an idealized one-dimensional hydrodynamic model of the thermosphere of hot Jupiters, of particular relevance for HD 209458 b. Concentrations of H-, C- and O-bearing constituents, as well as density, velocity and temperature of the whole plasma, are solved self-consistently. The evaporation rate is fluid-dynamically constrained by the occurrence of a sonic point in the expansion of the atmospheric gas. Rapid adiabatic cooling may place an additional constraint on the thermal structure near the transition between the lower and upper atmospheres of these planets. Evaporation rates and profiles of constituents will be given for various planet-star distances, appropriate to very hot Jupiters (~ 0.02 AU), hot Jupiters (~ 0.05 AU) and more temperate conditions (> 0.1 AU).


[Previous] | [Session 28] | [Next]

Bulletin of the American Astronomical Society, 37 #3
© 2004. The American Astronomical Soceity.