37th DPS Meeting, 4-9 September 2005
Session 18 Future Missions and Instrumentation
Poster, Monday, September 5, 2005, 6:00-7:15pm, Music Lecture Room 5

[Previous] | [Session 18] | [Next]


[18.02] Maximizing Mission Science Return Through use of Spacecraft Autonomy: Active Volcanism and the Autonomous Sciencecraft Experiment

S. Chien, A. G. Davies, R. Sherwood (JPL), ASE Science Team

Deep-space missions have been unable to react to dynamic events as encounter observation sequences are planned well in advance. In the case of planet, asteroid and comet fly-bys, the limited resources available are allocated to individual instruments long beforehand. However, for monitoring or mapping mission phases, alternative strategies and technologies are now available. Now, onboard data processing allows greater spacecraft and instrument flexibility, affording the ability to react rapidly to dynamic events, and increasing the science content of returned data. Such new technology has already been successfully demonstrated in the form of the New Millennium Program Autonomous Sciencecraft Experiment (ASE). In 2004 ASE successfully demonstrated advanced autonomous science data acquisition, processing, and product downlink prioritization, as well as autonomous fault detection and spacecraft command and control. ASE is software onboard the EO-1 spacecraft, in Earth-orbit. ASE controlled the Hyperion instrument, a hyperspectral imager with 220 wavelengths from 0.4 to 2.5 µm and 30 m/pixel spatial resolution. ASE demonstrated that spacecraft autonomy will be advantageous to future missions by making the best use of limited downlink, e.g., by increasing science content per byte of returned data, and by avoiding the return of null (no-change/no feature) datasets. and by overcoming communication delays through decision-making onboard enabling fast reaction to dynamic events. We envision this flight-proven science-driven spacecraft command-and-control technology being used on a wide range of missions to search for and monitor dynamic events, such as active, high-temperature volcanism on Earth and Io, and cryovolcanism on Triton and possibly other icy satellites. Acknowledgements: Part of this work was carried out at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA. We thank the EO-1 Flight Management Team and Chris Stevens and Art Chmielewski (NASA New Millennium Program) for their valuable support.


If you would like more information about this abstract, please follow the link to ai.jpl.nasa.gov. This link was provided by the author. When you follow it, you will leave the Web site for this meeting; to return, you should use the Back comand on your browser.

[Previous] | [Session 18] | [Next]

Bulletin of the American Astronomical Society, 37 #3
© 2004. The American Astronomical Soceity.