[Previous] | [Session 27] | [Next]
J. P. Mc Auliffe, A. A. Christou (Armagh Observatory)
It is known that fast meteoroids entering the martian atmosphere give rise to bright, detectable meteors (Adolfsson et al, Icarus 119, 144, 1996). Although single meteors have already been detected at Mars (Selsis et al., Nature 435, 581, 2005), the characterisation of the martian meteor year will require a large number of detections. Experience at the Earth suggests that data storage and bandwidth resources to conduct such surveys will be substantial, and may be prohibitive. In an attempt to quantify the problem in detail, we have simulated meteor shower detection in the martian and terrestrial atmospheres. For a given shower, we assume a meteoroid stream flux, size distribution and velocity based on current knowledge of Earth streams as well as the proximity of certain comets' orbits to that of Mars. A numerical code is used to simulate meteoroid ablation in a model martian and terrestrial atmosphere. Finally, using the same baseline detector characteristics (limiting magnitude, sky coverage) we generate detection statistics for the two planets. We will present results for different types of showers, including strong annual activity and episodic outbursts from Halley-type and Jupiter family comets. We will show how detection efficiency at Mars compares to the Earth for these showers and discuss optimum strategies for monitoring the martian atmosphere for meteor activity. Astronomy research at Armagh Observatory is funded by the Northern Ireland Department of Culture, Arts and Leisure (DCAL).
[Previous] | [Session 27] | [Next]
Bulletin of the American Astronomical Society, 37 #3
© 2004. The American Astronomical Soceity.