Previous | Session 169 | Next | Author Index | Block Schedule
C.S. Reynolds (University of Maryland, College Park)
The new century has seen a transformation in the way we think about supermassive black holes at the centers of galaxies. It has become clear that these monsters are not just rare quirks of nature. As well as being ubiquitous, growing evidence signals a fascinating connection between the relativistic physics occurring in the immediate vicinity of the black hole and the formation and evolution of galactic-scale structure.
My talk will comprise of two parts. Firstly, I will discuss observational and theoretical evidence that accretion onto supermassive black holes can indeed influence galaxy formation (which suggests a solution to the well-known cooling flow problem of galaxy clusters). In particular, I will focus on the successes and failures of recent theoretical work aimed at understanding Chandra observations of galaxy cluster cores. Secondly, I will discuss the ability of X-ray observations to probe the relativistic physics occurring in the central parts of the black hole accretion flow. Using data from the XMM-Newton satellite, we are now beginning to make crude measurements of black hole spin, a crucial parameter if we are to understand the physics of jet formation which are so important for the large-scale feedback. I will end by discussing the exciting developments that will be made possibly by the launch of LISA and Constellation-X.
Previous | Session 169 | Next
Bulletin of the American Astronomical Society, 37 #4
© 2005. The American Astronomical Soceity.