AAS Meeting #193 - Austin, Texas, January 1999
Session 41. Pulsars
Display, Thursday, January 7, 1999, 9:20am-6:30pm, Exhibits Hall 1

[Previous] | [Session 41] | [Next]


[41.13] On Self-Ignition and the Propagation of Flame Fronts on the Surfaces of Accreting Neutron Stars

A. Bayliss, E. L. Sandquist, R. E. Taam (Northwestern U.)

The behavior of nuclear burning in the accreted layer of a neutron star is investigated for helium and hydrogen-helium mixtures. Attention is focused on the propagation of a thermal wave due to electron conduction or radiative diffusion in the lateral direction. The fully time-dependent calculations reveal that a steady state flame front is not necessarily applicable at high mass accretion rates (dM/dt > (dM/dt)Edd). In particular, there are parameter regimes in which a steady state structure is never attained within physically relevant timescales because the gas ahead of a front self-ignites. Hence, a thermonuclear flash may take place on a timescale unrelated to the timescale for a steady state front to propagate over a homogeneous region. The existence of irregular burst activity in highly luminous neutron star X-ray binary systems may provide some observational support for this theoretical picture.


[Previous] | [Session 41] | [Next]