Solar Physics Division Meeting 2000, June 19-22
Session 1. Helioseismology, Magnetic Fields, Chromosphere and Transition Region
Display, Chair: C. U. Keller, Monday-Thursday, June 19, 2000, 8:00am-6:00pm, Forum Ballroom

[Previous] | [Session 1] | [Next]


[1.06] Evolving Dynamics of the Supergranular Flow Field

M.L. DeRosa, J.P. Lisle, J. Toomre (University of Colorado)

We study several large (45-degree square) fields of supergranules for as long as they remain visible on the solar disk (about 6 days) to characterize the dynamics of the supergranular flow field and its interaction with surrounding photospheric magnetic field elements. These flow fields are determined by applying correlation tracking methods to time series of mesogranules seen in full-disk SOI-MDI velocity images. We have shown previously that mesogranules observed in this way are systematically advected by the larger scale supergranular flow field in which they are embedded. Applying correlation tracking methods to such time series yields the positions of the supergranular outflows quite well, even for locations close to disk center.

These long-duration datasets contain several instances where individual supergranules are recognizable for time scales as long as 50 hours, though most cells persist for about 25 hours that is often quoted as a supergranular lifetime. Many supergranule merging and splitting events are observed, as well as other evolving flow patterns such as lanes of converging and diverging fluid. By comparing the flow fields with the corresponding images of magnetic fields, we confirm the result that small-scale photospheric magnetic field elements are quickly advected to the intercellular lanes to form a network between the supergranular outflows. In addition, we characterize the influence of larger-scale regions of magnetic flux, such as active regions, on the flow fields. Furthermore, we have measured even larger-scale flows by following the motions of the supergranules, but these flow fields contain a high noise component and are somewhat difficult to interpret.

This research was supported by NASA through grants NAG 5-8133 and NAG 5-7996, and by NSF through grant ATM-9731676.


The author(s) of this abstract have provided an email address for comments about the abstract: derosa@colorado.edu

[Previous] | [Session 1] | [Next]