[Previous] | [Session 19] | [Next]
A. Inada (Graduate School of Science and Technology, Kobe University / Max Planck Institut fuer Aeronomie), W. J. Markiewicz (Max Planck Institut fuer Aeronomie)
A one-dimensional model of the formation and evolution of the Martian surface fogs is presented. The model includes the micro-physical processes of coagulation, heterogeneous nucleation, condensation, and sublimation. It simulates the diurnal variations in the radii of ice-coated particles and hence the water ice volume on the particles within a 1 km thick layer near the surface. The temperature and pressure profiles used are obtained from the European Martian Climate Database (Forget et al., 1999, JGR, 104, 24155). The places of the Pathfinder landing site (19.2N, 33.2W) and the Memnonia region (15.0S, 145.0W) where the surface fogs were imaged by Viking Orbiter 1 were selected for the simulations. Although the vertical water vapor profile is not well known, the recent data from the Imager for the Mars Pathfinder indicate that the mixing ratio can be as high as 600 ppm in the near surface layer of 1 to 3 km. The dependence of fog formation on the value of this mixing ratio is also discussed.
This research was carried out under partial support of JSPS Research Fellowships for Young Scientists.