AAS 200th meeting, Albuquerque, NM, June 2002
Session 33. Gaseous Galaxy Halos and Edges of Disk Galaxies
Topical Session Oral, Tuesday, June 4, 2002, 8:30-10:00am, 10:45am-12:30pm, 2:00-3:30pm, 3:45-5:30pm, Ballroom A

[Previous] | [Session 33] | [Next]


[33.09] Diffuse, Warm Ionized Gas

L.M. Haffner (Wisconsin)

Over the past decade, new high-sensitivity observations have significantly advanced our knowledge of the diffuse, ionized gas in spiral galaxies. This component of the interstellar medium, often referred to as Warm Ionized Medium (WIM) or Diffuse Ionized Gas (DIG), plays an important role in the complex stellar-interstellar matter and energy cycle. In examining the distribution and physical properties of this gas, we learn not only about the conditions of the medium but also about processes providing heating and ionization in the halos of spiral galaxies.

For the Milky Way, three new H\alpha surveys are available providing large sky coverage, arc-minute spatial resolution, and the ability to kinematically resolve this prominent optical emission line. These new, global views show that the Warm Ionized Medium of the Galaxy is ubiquitous as previously suspected, is rich with filamentary structure down to current resolution limits, and can be traced into the halo at large distances from the Galactic plane. Observations of additional optical emission lines are beginning to probe the physical conditions of the WIM. Early results suggest variations in the temperature and ionization state of the gas which are not adequately explained by Lyman continuum stellar photoionization alone.

In parallel with this intensive work in the Milky Way have been numerous studies about the diffuse, ionized gas in other spiral galaxies. Here, deep, face-on spiral investigations provide some of the best maps of the global DIG distribution in a galaxy and begin to allow a probe of the local link between star formation and the powering of ionized gas. In addition, ionized gas has been traced out to impressive distances (z > 3 kpc) in edge-on spirals, revealing out large-scale changes in the physical conditions and kinematics of galactic halos.


If you would like more information about this abstract, please follow the link to http://www.astro.wisc.edu/wham/. This link was provided by the author. When you follow it, you will leave the Web site for this meeting; to return, you should use the Back comand on your browser.

The author(s) of this abstract have provided an email address for comments about the abstract: haffner@astro.wisc.edu

[Previous] | [Session 33] | [Next]

Bulletin of the American Astronomical Society, 34
© 2002. The American Astronomical Soceity.