AAS 200th meeting, Albuquerque, NM, June 2002
Session 85. Stars: Disks, Shells and Variability
Oral, Thursday, June 6, 2002, 2:00-3:30pm, Ballroom A

[Previous] | [Session 85] | [Next]


[85.07] An Instability Mechanism for GW Vir Variables

A. N. Cox (LANL)

A puzzle for almost 20 years has been the cause of the pulsational instability for the hot post-planetary nebula pre-white dwarfs. It was known right after the discovery of these variable stars that the cyclical ionization of carbon and oxygen can make the stars pulsate by the normal kappa mechanism. However, the presence of helium observed on the surface of these stars poisons this mechanism by diluting the opacity ``bump" of C and O. The problem has been to get pulsationally unstable models with significant helium in the layers just below the surface where the pulsations are driven. Now it appears that an additional opacity ``bump" in the temperature-opacity plane, due to the K-shell ionization of the small amount of iron in the stellar mixture unaffected by stellar evolution, might give sufficient driving when added to that from the C and O ionizations. Some small ion levitation abundance enhancement from the solar value may be needed though. The latest extensive theoretical interpretations by Bradley and Dziembowski (1996) show low order nonradial g-modes with small motions in deep pulsation damping layers do not suffer much from the helium poison, but the observed longer periods for the hottest stars in this GW Vir (often called PG1159-035) class remained unexplained. The new Los Alamos opacities for the observed abundances, 0.6 solar mass models for GW Vir itself at 140,000 K, and the pulsational analysis for the observed periods around the observed 516 seconds will be presented.


[Previous] | [Session 85] | [Next]

Bulletin of the American Astronomical Society, 34
© 2002. The American Astronomical Soceity.