[Previous] | [Session 14] | [Next]
S. J. Bus (U. Hawaii), R. P. Binzel (MIT), J. Sunshine (SAIC), T.H. Burbine, T.J. McCoy (Smithsonian Inst.)
We present visible and near-infrared spectra for members of both the Henan and Watsonia asteroid families. These two families are known to contain asteroids belonging to the taxonomic L class based on visible wavelength spectroscopy obtained during the second phase of the Small Main-belt Asteroid Spectroscopic Survey (SMASSII, Bus and Binzel 2002, Icarus in press). The L-type asteroids have visible-wavelength spectra similar to those of K-types but with steeper spectral slopes shortward of 0.75 micron, becoming relatively flat longward of 0.75 micron and showing little or no concave curvature related to a 1 micron silicon absorption band.
Our current study of the Henan and Watsonia families uses data obtained with SpeX, a medium-resolution near-infrared spectrograph available at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea. When combined with the SMASSII results, we find the near-infrared spectra of these asteroids contains very weak 1 micron bands but have moderately deep 2 micron bands. A possible interpretation of this anomalous spectral signature is the presence of spinel, suggested by Burbine et al. (1992, Meteoritics 27, 424) for the asteroids 387 Aquitania and 980 Anacostia, both likely members of the Watsonia family (Bus 1999, Ph.D. thesis). The work of Burbine et al. made use of combined ECAS and 52-color measurements covering the visible and near-IR wavelengths out to 2.5 microns. We can now use the high signal-to-noise data obtained with SpeX to more fully explore the mineralogy of the taxonomic L class and to search for evidence of mineralogical variations among the Henan and Watsonia asteroid family members.
If the author provided an email address or URL for general inquiries,
it is as follows:
Bulletin of the American Astronomical Society, 34, #3< br> © 2002. The American Astronomical Soceity.