37th DPS Meeting, 4-9 September 2005
Session 39 Icy Satellites II
Oral, Wednesday, September 7, 2005, 2:15-4:00pm, Law LG19

[Previous] | [Session 39] | [Next]


[39.08] Iapetus Surface Temperatures, and the Influence of Sublimation on the Albedo Dichotomy: Cassini CIRS Constraints

J. R. Spencer (Southwest Research Institute), J. C. Pearl, M. Segura (NASA GSFC), Cassini CIRS Team

The Composite Infrared Spectrometer (CIRS) on the Cassini orbiter obtained extensive observations of Iapetus' thermal emission during the New Year 2005 flyby, with best 8 - 16 \mum spatial resolution of 35 km per pixel. Observed subsolar temperatures on the dark terrain reach nearly 130 K, much warmer than any other satellite surface in the Saturn system, due to the combination of low albedo and slow rotation. These high temperatures mean that, uniquely in the Saturn system, water ice sublimation rates are significant at low latitudes on Iapetus' dark side, and surface water ice is probably not stable there on geological timescales. This result is consistent with the lack of water ice at low latitudes on the dark terrain inferred from Cassini UVIS UV spectra (Hendrix et al., 2005 LPSC).

Thermally-controlled migration of water ice may thus contribute to the curious shape of the light/dark boundary on Iapetus, with bright poles and dark terrain extending round the equator onto the trailing side. Impacts of Saturn-centric or prograde heliocentric material cannot alone explain this shape, as their impact flux depends only on distance from the apex of motion (though the impact distribution of Oort cloud comet dust may be consistent with the observed albedo pattern (Cook and Franklin 1970)). We model the ballistic migration of water ice across the surface of Iapetus, determining temperatures and sublimation rates assuming CIRS-constrained thermal inertia and a simple dependence of albedo on distance from the apex of motion. Water ice is lost rapidly from low latitudes on the dark leading side and accumulates near the poles, and is also lost, though more slowly, in equatorial regions near the sub-Saturn and anti-Saturn points. The resulting water ice distribution pattern matches the distribution of Iapetus' bright terrain remarkably well. Albedo modification by thermal migration can thus help to reconcile Iapetus' albedo patterns with albedo control by Saturn-centric or prograde heliocentric impactors.


[Previous] | [Session 39] | [Next]

Bulletin of the American Astronomical Society, 37 #3
© 2004. The American Astronomical Soceity.