AAS 207th Meeting, 8-12 January 2006
Session 74 Planets in Binary Star Systems, Young Stars and Jets
Poster, Tuesday, 9:20am-6:30pm, January 10, 2006, Exhibit Hall

Previous   |   Session 74   |   Next  |   Author Index   |   Block Schedule

[74.01] Habitability in the Upsilon Andromedae System

A. Dove (Univeristy of Missouri - Columbia and IfA, Univeristy of Hawaii), N. Haghighipour (Institute for Astronomy and NASA Astrobiology Insititute, University of Hawaii)

Upsilon Andromedae is an F8 V star with a stellar companion orbiting at about 750 AU. Doppler velocity measurements have revealed the presence of three planets orbiting the star, with periods of about 4.6 days, 241 days, and 1267 days (Butler et al., 1999). Like many extrasolar planets orbiting at radii greater than 0.2 AU, the outer two planets of Ups And exhibit high eccentricities (greater than 0.1). Planet-planet scattering is one mechanism that has been suggested to cause perturbations that excite the eccentricities of these planets (Ford et al., 2005). We investigate the habitability of the Ups And planetary system as it undergoes planet-planet scattering and evolves from a hypothetical four-planet system into its observed state. We present the results of the numerical integrations of the system with a fourth planet at a distance of 4.76 AU from the central star. Our results demonstrate that an Earth-like planet could not remain stable in the HZ of this system. We also show, through an extensive survey of the parameter-space of this system, that it is important to include the inner planet of this system in the simulations of its dynamical evolution, and in the study of its habitability. This work was conducted by a Research Experience for Undergraduates (REU) position at the University of Hawaii's Institute for Astronomy and funded by the NSF.

Previous   |   Session 74   |   Next

Bulletin of the American Astronomical Society, 37 #4
© 2005. The American Astronomical Soceity.